رآکتور هسته ای

در اين قسمت مقالات مربوط به تجهيزات فشار قوي موجود مي باشد .
موضوع جدید ارسال پست
نمایه کاربر
Modir
مدیر تالار
مدیر تالار
پست: 303
تاریخ عضویت: دو شنبه 17 آبان 1389, 12:00 am
محل اقامت: شاهرود
تشکر شده: 23 دفعه
تماس:

رآکتور هسته ای

پست توسط Modir » دو شنبه 1 آذر 1389, 10:46 am

واکنشگاه هسته‌ای یا رآکتور اتمی دستگاهی برای انجام واکنشهای هسته‌ای بصورت تنظیم شده و تحت کنترل است. این دستگاه در اندازه‌های آزمایشگاهی، برای تولید ایزوتوپهای ویژه مواد پرتوزا (رادیواکتیو) و همینطور پرتو-داروها برای مصارف پزشکی و آزمایشگاهی، و در اندازه‌های صنعتی برای تولید برق ساخته می‌شوند. واکنشهای هسته‌ای به دو صورت شکافت و همجوشی، بسته به نوع مواد پرتوزا استفاده شده انجام میگیرند. واکنشگاه‌ها بسته به اینکه چه نوع کاربردی داشته باشند از یکی از این دو نوع واکنش بهره می‌گیرند.

در واکنشگاه دو میله ماده پرتوزا یکی به‌عنوان سوخت و دیگری به‌عنوان آغازگر بکار می‌رود. میزان این دو ماده بسته به نوع واکنش، اندازه واکنشگاه و نوع فراورده نهایی بدقت محاسبه و کنترل می‌شود. در واکنشگاه هسته‌ای همیشه دو عنصر پرتوزا به یک یا چند عنصر پرتوزا دیگر تبدیل می‌شوند که این عناصر بدست آمده یا مورد مصرف صنعتی یا پزشکی دارند و یا بصورت پسماند هسته‌ای نابود می‌شوند. حاصل این فرایند مقادیر زیادی انرژی است که بصورت امواج اتمی والکترومغناطیس آزاد می‌گردد. این امواج شامل ذرات نوترینو، آلفا، بتا، پرتو گاما، امواج نوری و فروسرخ است که باید بطور کامل کنترل شوند. امواج آلفا، بتا و گامای تولیدی توسط واکنش هسته‌ای به‌عنوان محرک برای ایجاد واکنشهای هسته‌ای دیگر در رآکتورهای مجاور برای تولید ایزوتوپهای ویژه بکار میروند. انرژی گرمایشی حاصل از این واکنش و تبدیل این عناصر پرتوزا در واکنشگاه‌های صنعتی برای تولید بخار آب و تولید برق بکار می‌رود. برای نمونه انرژی حاصل از واکنش یک گرم اورانیوم معادل انرژی گرمایشی یک میلیون لیتر نفت خام است. قابل تصور است که این میزان انرژی با توجه به سطح پایداری ماده پرتوزا در واکنشهای هسته‌ای تا چه میزان مقرون به صرفه خواهد بود.

با این حال مشکلات استخراج، آماده سازی، نگهداری و ترابری مواد پرتوزای بکار رفته در واکنشگاه‌های تولید برق و دشواری‌های زیستبومی که این واکنشگاه‌ها ایجاد می‌کنند باعث عدم افزایش گرایش بشر به تولید برق از طریق این انرژی شده است. باید توجه داشت که میزان تابش در اطراف واکنشگاه‌های هسته‌ای به اندازه‌ای بالاست که امکان زیست برای موجودات زنده در پیرامون واکنشگاه‌ها وجود ندارد. به همین دلیل برای هریک از رآکتورهای هسته‌ای پوششهای بسیار ضخیمی از بتن همراه با فلزات سنگین برای جلوگیری از نشت امواج الکترومغناطیس به بیرون ساخته می‌شود. بدون این پوششها تا کیلومترها پیرامون واکنشگاه، سکونت‌پذیر برای موجودات زنده نخواهد بود. مشکلاتی که نشت مواد پرتوزا از واکنشگاه نیروگاه اتمی چرنوبیل در دهه ۸۰ میلادی بوجود آورد خود گواهی بر این مدعاست.

کاربرد پرتوهای تابش زا :

بسیاری از محصولات تولیدی واکنش شکافت هسته‌ای شدیدا ناپایدارند و در نتیجه، قلب راکتور محتوی مقادیر زیادی نوترون پر انرژی، پرتوهای گاما، ذرات بتا وهمچنین ذرات دیگر است. هر جسمی که در راکتور گذاشته شود، تحت بمباران این همه تابشهای متنوع قرار می‌گیرد. یکی از موارد استعمال تابش راکتور تولید پلوتaaونیوم ۲۳۹ است .این ایزوتوپ که نیمه عمری در حدود ۲۴۰۰۰ سال دارد به مقدار کمی در زمین یافت می‌شود. پلوتونیوم ۲۳۹ از لحاظ قابلیت شکافت خاصیتی مشابه اورانیوم دارد. برای تولید پلوتونیوم ۲۳۹، ابتدا اورانیوم ۲۳۸ را در قلب راکتور قرار می‌‌دهند که در نتیجه واکنش‌هایی که صورت می‌‌گیرد اورانیوم ۲۳۹ بوجود می‌‌آید. اورانیوم ۲۳۹ ایزوتوپی ناپایدار است که با نیمه عمری در حدود ۲۴ دقیقه، از طریق گسیل ذره بتا، به نپتونیوم ۲۳۹ تبدیل می‌شود. نپتونیوم ۲۳۹ نیز با نیمه عمر ۲/۴ روز و گسیل ذره بتا واپاشیده و به محصول نهایی یعنی پلوتونیوم ۲۳۹ تبدیل می‌شود. در این حالت پلوتونیوم ۲۳۹ همچنان با مقادیری اورانیوم ۲۳۸ آمیخته است اما این آمیزه چون از دو عنصر مختلف تشکیل شده است، بروش شیمیایی قابل جدا سازی است. امروزه با استفاده از تابش راکتور صدها ایزوتوپ مفید می‌توان تولید کرد که بسیاری از این ایزوتوپ‌های مصنوعی را در پزشکی بکار میبریم. آثار زیانبار انفجارهای اتمی و تشعشعات ناشی از آن باعث آلودگی آبهای زیرزمینی، زمین‌های کشاورزی و حتی محصولات کشاورزی می‌شود ولی با همه این مضرات اورانیوم عنصری است ارزشمند، زیرا در کنار همه سواستفاده‌ها می‌‌توان از آن به نحوی احسن و مطابق با معیارهای بشر دوستانه استفاده نمود. فراموش نکنید از اورانیوم و پلوتونیوم می‌‌توان استفاده‌های صلح آمیز نیز داشت چرا که از انرژی یک کیلوگرم اورانیوم ۲۳۵ می‌‌توان چهل هزار کیلو وات ساعت الکتریسیته تولید کرد که معادل مصرف ده تن ذغال سنگ یا ۵۰۰۰۰ گالن نفت است.

غنی‌سازی اورانیوم عملی است که بواسطه آن در یک توده اورانیوم طبیعی مقدار ایزوتوپ ۲۳۵U بیشتر شود و مقدار ایزوتوپ ۲۳۸U کمتر. غنی‌سازی اورانیوم یکی از مراحل چرخه سوخت هسته‌ای است.

اورانیوم طبیعی (که بشکل اکسید اورانیوم است) شامل ۳/۹۹٪ از ایزوتوپ ۲۳۸U و ‎۰/۷‎٪ از ‎۲۳۵U است. ایزوتوپ ۲۳۵U اورانیوم قابل شکافت و مناسب برای بمب‌ها و نیروگاه‌های هسته‌ای است.

۲۳۸U باقی‌مانده را اورانیوم ضعیف شده می‌نامند و نوعی زباله اتمی است. بخاطر سختی زیاد و آتشگیری و ویژگی‌های دیگر از آن در ساختن گلوله‌های ضد زره استفاده می‌کنند. اورانیوم ضعیف شده نیز همچنان پرتوزا است.

سنگ اورانیوم

انواع اورانیوم :

«اورانیوم با غنای پایین» که میزان ۲۳۵U آن کمتر از ۲۵٪ ولی بیشتر از ‎۰/۷‎٪ است. سوخت بیشتر نیروگاه‌های هسته‌ای بین ۳ تا ۵ درصد ۲۳۵U است.

«اورانیوم با غنای بالا» که ۲۳۵U در آن بیشتر از ۲۵٪ و حتی در مواردی بیش از ۹۸٪ است و مناسب برای کاربردهای نظامی وساخت بمب‌های هسته‌ای است.

کیک زرد نامی است که به اکسید اورانیوم تغلیظ شده (با فرمول U3O8) داده شده است. از کیک زرد برای تهیه اورانیوم غنی‌شده استفاده می‌شود.

برای تهیه کیک زرد کانسنگ اورانیوم را پس از استخراج از معدن آسیاب می‌کنند و بعد از شستشو با اسید سولفوریک، آن را خشک و صاف می‌کنند. ماده حاصل شده در این مرحله قهوه‌ای یا سیاه است و زرد نیست. نام «کیک زرد» به خاطر رنگ زرد آن در مراحل اولیه کار است. کیک زرد ماده‌ای پرتوزا است.

تمام کشورهایی که در آن‌ها اورانیوم استخراج می‌شود کیک زرد هم می‌سازند.

کیک زرد روی صفحه شیشه ای

روش های غنی سازی اورانیوم :

* روش انتشار (پخش) حرارتی
* روش انتشار (پخش) گازها
* روش الکترومغناطیسی
* روش مرکزگریز گازی
* روش مرکزگریز گازی زیپه
* روش‌های لیزری
* روش شیمیایی
* روش پلاسمایی

مرکزگریز گازی، یا سانتریفوژ گازی، دستگاهی است که برای غنی‌سازی اورانیوم بکار می‌رود.

این دستگاه از چندین استوانه درست شده که به سرعت (در حدود ۱۰۰۰ دور در ثانیه) حول محور خود می‌گردند و در آن‌ها گاز UF6 قراردارد. ملکول‌هائی که دارای 238U هستند در اثر نیروی مرکز گریز بیشتری که به آن‌ها وارد می‌شود به طرف جدار استوانه می‌روند و ملکول‌هایی که دارای 235U هستند در ناحیه میانی استوانه قرار می‌گیرند. با جداکردن گازهای ناحیه میانی و تکرار این کار در استوانه دیگر، UF6 با درصد بالاتری از ایزوتوپ 235U بدست می‌آید.

کار غنی سازی در چند مرحله و با چند مجموعه از مرکزگریزها انجام می‌شود. هریک از این مجموعه‌ها را یک «آبشار» (cascade) می‌گویند.

بریتانیا و آلمان و فرانسه و چین تأسیسات بزرگ مرکزگریز گازی دارند و در آن‌ها اورانیوم غنی شده برای مصارف نظامی و غیرنظامی و صادرات تولید می‌کنند. ژاپن از این روش برای تامین سوخت هسته‌ای داخلی خود استفاده می‌کند. تأسیسات بزرگی نیز در آمریکا در دست ساخت است. ظاهراً پاکستان با این روش اورانیوم لازم برای بمب اتمی خود را تولید کرد. مرکز گریزهای پاکستان به دو صورت پ۱ و پ۲ ساخته شده است. در نمونه پ۱ محور مرکزگریز آلومینیومی است. در نمونه پ۲ محور مرکزگریز فولادی است که سرعت دوران بیشتری را ممکن می‌کند و غنی‌سازی بیشتری انجام می‌دهد.

شکافت هسته ای :

شکافت هسته ای فرآیندی است که در آن یک اتم سنگین مانند اورانیوم به دو اتم سبکتر تبدیل می‌شود. وقتی هسته‌ای با عدد اتمی زیاد شکافته شود، بر پایه فرمول اینشتین، مقداری از جرم آن به انرژی تبدیل می‌شود. از این انرژی در تولید برق (در نیروگاه هسته‌ای) یا تخریب (سلاح‌های هسته‌ای) استفاده می‌شود. اوتوهان زمانی که قصد داشت از بمباران اورانیوم با نوترون آن را به رادیم تبدیل کند دریافت که به اتم بسیار کوچک‌تری دست یافته است.در تمام واکنش های هسته ای که تا ان زمان شناخته شده بود تنها ذرات کوچک از هسته جدا می شدند اما این بار یک تقسیم بزرگ رخ داده بود. لایز میتنر و اوتو فریش دریافتند که فراورده ی این بمباران نوترونی باریم است و جرم هر اتم اورانیم هنگام تبدیل شدن به ذرات کوچک‌تر به اندازه ی یک پنجم جرم یک پروتون کاهش می یابد و این جرم مطابق رابطه ی اینشتین E=mc² به انرژی تبدیل شده است.به خاطر شباهت این پدیده ی تقسیم هسته با تقسیم سلولی میتنر و فریش آن را شکافت نامیدند.مقاله ی این یافته در یازدهم فوریه ی ۱۹۳۹ در نشریه ی نیچر با عنوان "واکنش هسته ای نوع جدید" منتشر شد. در تصویر اتم اورانیم-۲۳۵ دیده می شود که پس از برخورد یک نوترون متلاشی شده و پرتو های رادیو اکتیو از خود صادر می کند.سپس به دو عنصر باریم-۱۴۱ و کریپتون-۹۲ تقسیم شده و به پایداری می رسد.

همجوشی فرآیندی عکس عمل شکافت هسته‌ای است. در فرآیند همجوشی هسته‌ای هسته‌های سبک مانند هیدروژن، دوتریوم و تریتیوم با یکدیگر همجوشی داده شده و هسته‌های سنگین‌تر و مقداری انرژی تولید می‌شود.

برای اینکه همجوشی امکان پذیر باشد هسته‌هایی که در واکنش وارد می‌شوند باید داریای انرژی جنبشی کافی باشند تا بر میدان الکترواستاتیکی پیرامونشان فائق آیند. بنابر این دما‌های وابسته به واکنش‌های همجوشی فوق العاده بالاست.

هم جوشی طبیعی :

همجوشی به صورت طبیعی هم رخ می‌دهد. انرژی گرمایی که هر روزه زمین و منظومه شمسی را گرم می‌کند ناشی از واکنشهای همجوشی در خورشید است به این نحو که در خورشید (یا در ستارگان دیگر) نیروهای گرانشی قوی باعث می‌شوند ایزوتوپهای هسته‌های هیدروژن به اندازه کافی به هم نزدیک و با هم ترکیب شوند تا هسته هلیوم و مقداری انرژی تولید شود.

مزیت همجوشی هسته‌ای نسبت به شکافت هسته‌ای مقایسه می‌شود:

*
منابع سوخت آن بسیار فراوان است. به عنوان مثال دو تریوم حدود ۱۵۳ ۰/۰ درصد اتمی ازهیدروژنهای آب اقیانوسها را تشکیل می‌دهد. تریتون نیز در فرایند جذب نوترون توسط لیتیوم قابل تولید است.
*
به ازاء هر نوکلئون از ماده سوخت، انرژی تولیدی نسبت به روش شکافت بیشتر است.
*
معضل پسماندهای هسته‌ای را ندارد،
*
اینکه در هنگام وقوع حوادث احتمالی، راکتور همجوشی از کنترل خارج نمی‌شود.

به عنوان مثالی از انرژی تولیدی در یک راکتور همجوشی می‌توان گفت اگر یک گالن از آب دریا را که دارای مقدارکافی دوترون است در واکنش همجوشی استفاده کنیم معادل ۳۰۰ گالن گازوئیل انرژی بدون آلودگی تولید می‌کند.

روش های هم جوشی :

محصور سازي

يك تعريف ساده و پايه اي از همجوشي عبارت است از فرو رفتن هسته هاي چند اتم سبكتر و تشكيل يك هسته سنگينتر.مثلا واكنش كلي همجوشي كه در خورشيد رخ ميدهد عبارت است از برخورد هسته هاي چهاراتم هيدروژن وتبديل آنها به يك اتم هليوم .

تا اينجا ساده به نظر ميرسد ولي مشكلي اساسي سر راه است;مي دانيدهسته ازذرات ريزي تشكيل شده است كه پروتون ونوترون جزءلاينفك آن هستند.نوترون بدون بار وپروتون بابارمثبت كه سايربارهاي مثبت رابه شدت ازخودميراند.مشكل مشخص شد؟ بله…اگرپروتونها(هسته هاي هيدروژن)يكديگررادفع ميكنندچگونه ميتوان آنهارادرهمجوشي شركت داد؟

همانطوركه حدس زديد راه حل اساسي آن است كه به اين پروتونهاآنقدرانرژي بدهيم كه انرژي جنبشي آنهابيشترازنيروي دافعه كولني آنهاشود و پروتونها بتوانند به اندازه كافي به هم نزديك شوند.حال چگونه اين انرژي جنبشي را توليد كنيم؟گرما راه حل خوبيست.در اثر افزايش دما جنب و جوش وبه عبارت ديگرانرژي جنبشي ذرات بيشتر و بيشتر ميشود به طوري كه تعداد برخوردها و شدت آنها بيشتر و بيشتر ميشود.به نظر شما آيا ديگر مشكلي وجود ندارد؟ خير,مسئله اساسيتري سر راه است.

يك سماور پر از آب را تصور كنيد.وقتي سماور را روشن مي كنيد با اين كار به آب درون سماور گرما ميدهيد(انرژي منتقل مي كنيد).در اثر اين انتقال انرژي دماي آب رفته رفته بالاتر مي رود و به عبارتي جنب و جوش مولكولهاي آب زياد مي شود.در اين حالت بين مولكولهاي آب برخوردهايي پديد مي آيد.هر مولكول كه از شعله(يا المنت يا هر چيز ديگري)مقداري انرژي دريافت كرده است آنقدر جنب و جوش مي كند تا بالاخره (به علت محدود بودن محيط سماور و آب)انرژي خود رابه ديگري بدهد.مولكول بعدي نيز به نوبه خود همين عمل را انجام ميدهد.بدين ترتيب رفته رفته انرژي منبع گرما در تمام آب پخش مي شود و دماي آب بالا ميرود.خوب يك سوال:آيا وقتي بدنه سماور را لمس مي كنيم هيچ گرمايي حس نمي كنيم؟…بله حس ميكنيم.دليلش هم كه روشن است.برخورد مولكولهاي پر انرژي آب با بدنه سماور و انتقال انرژي خود به آن.هدف ما از روشن كردن سماور گرم كردن آب بود نه سماور.اميدوارم تا اينجا پاسخ اولين مشكل اساسي بر سر راه همجوشي را دريافت كرده باشيد.بله اگر اگر با صرف هزينه و زحمت بالا سوخت را به دمايي معادل ميليونها درجه كلوين برسانيم آيا اين اتمها آنقدر صبر خواهند كرد تا با ديگر اتمها وارد واكنش شوند يا در اولين فرصت انرژي بالاي خود را به ديواره داده وآن را نا بود ميكند؟(...شما بوديد چه مي كرديد؟؟؟...).بنابر اين نياز به ((محصور سازي))داريم;يعني بايد به طريقي اجازه ندهيم كه اين گرما به ديواره منتقل شود.

رسيدن به دماي بالا:

شروع واكنش همجوشي به دماي بسيار بالايي نيازمند است.درست است كه دماي پانزده ميليون درجه دماي بسيار بالايست و تصور بوجود آوردنش روي زمين مشكل و كمي هم وحشتناك مي باشد ولي معمولا در زندگي روزمره دور و برمان دماهاي خيلي بالايي وجود دارند و ما از آنها غافليم.مثلا وقتي در اثر اتصالي سيمهاي برق داخل جعبه تقسيم ميسوزد وشما صداي جرقه آنرا ميشنويد و پس از بررسي متوجه مي شويد كه كاملا ذوب شده فقط به خاطر دماي وحشتناكي بوده كه آن تو به وجود آمده.شايد باور نكنيد ولي اين دما به حدود سي-چهل هزار درجه كلوين ميرسد.البته اين دما براي همجوشي حكم طفل ني سواري را دارد.يا اينكه مي توانيم با استفاده از ولتاژهاي بسيار بالا قوسهاي الكتريكي را از درون لوله هاي مويين عبور بدهيم.به اين ترتيب دماي هواي داخل لوله كه اكنون به پلاسما تبديل شده به نزديك چند ميليون درجه مي رسد.(كه باز هم براي همجوشي كم است).يكي از بهترين راهها استفاده از ليزر است.مي دانيد كه ليزرهايي با توانهاي بسيار بالا ساخته شده اند.مثلا نوعي از ليزر به نام ليزر نوا(NOVA)مي تواند در مدت كوتاهي انرژي اي معادل ده به توان پنج ژول توليد كند.اما بازهم در كنار هر مزيت معايبي هست.مثلا اين ليزر تبعا انرژي زيادي مصرف ميكند كه حتي با صرف نظر از آن مشكل ديگري هست كه ميگويد اگر انرژي توليدي ليزر در آن مدت كوتاه بايد تحويل داده بشود پس براي برقرار ماندن معيار لاوسن (حالا كه مدت زمان محصور سازي پايين آمده)بايد چگالي بالا تر برود.كه در اين مورد از تراكم و چگالي جامد هم بالا تر ميرود.

انواع واكنشها:

براي بهينه سازي كار رآكتورهاي همجوشي و افزايش توان خروجي آنها راههاي متعددي وجود دارد.يكي از اين راهها انتخاب نوع واكنشيست كه قرار است در رآكتور انجام بشود.

ظبق تصوير زير نوعي از واكنش همجوشي بصورتيست كه در آن دو هسته سبك با يكديگر واكنش داده و يك هسته سنگين تر را بوجود مياورند.يعني حاصل تركيب دو هسته دوتريم و توليد يك هسته ترتيم به علاوه يك هسته هيدروژن معموليست. اين واكنش انرژي ده مي باشد.چون تفاوت انرژي بستگي هسته سنگين تر وهسته هاي سبكتر مقداري منفيست.

در اين واكنش مقدار انرژي اي توليدي برابر4MeVمي باشد.

قبلا گفته شد كه بايد براي انجام همجوشي هسته ها به اندازه كافي به هم نزديك بشوند.اين مقدار كافي حدودا معادل3fmمي باشد.چون در اين فاصله ها انرژي پتانسيل الكترواسناتيكي دو دوترون در حدود 0.5MeVهست پس مي توانيم با اين مقدار انرژي دادن به يكي از دوترونها دافعه كولني بين دوترونها ر شكسته و واكنش را شروع كنيم كه بعد از انجام مقدار4.5MeVتوليد مي شود.(0.5MeVانرژي جنبشي به علاوه 4MeVانرژي آزاد شده)

همانطور كه مي بينيد بهترين گزينه واكنش سوم مي باشد


موضوع جدید ارسال پست

بازگشت به “ سيستم هاي قدرت”

چه کسی حاضر است؟

کاربران حاضر در این انجمن: کاربر جدیدی وجود ندارد. و 1 مهمان